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In this paper, the axisymmetric dynamic behavior and snap-through buckling of thin
elastic shallow spherical shells under harmonic excitation is investigated. Based on
Marguerre kinematical assumptions, the governing partial differential equations of motion
for a pre-loaded cap are presented in the form of a compatibility equation and a transverse
motion equation. The continuous model is reduced to a finite degree of freedom system
using the Galerkin method and a Fourier–Bessel approach. Results show that pre-loaded
shells may exhibit co-existing stable equilibrium states and that with the application of
sufficiently large dynamic loads the structure escapes from the well corresponding to pre-
buckling configurations to another. This escape load may be much lower than the
corresponding quasi-static buckling load. Indeed, complex resonances can occur until the
system snaps-through, often signalling the loss of stability. As parameters are slowly
varied, steady state instabilities may occur; these can include jumps to resonance,
subharmonic period-doubling bifurcations, cascades to chaos, etc. Moreover a sudden
pulse of excitation may lead to a transient failure of the system. In this paper, we examine
how spherical caps under harmonic loading may be assessed in an engineering context, with
a view to design against steady state instabilities as well as the various modes of transient
failure. Steady state and transient stability boundaries are presented in which special
attention is devoted to the determination of the critical load conditions. From this
theoretical analysis, dynamic buckling criteria can be properly established which may
constitute a consistent and rational basis for design of these shell structures under
harmonic loading.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The axisymmetric buckling of shallow spherical shells under quasi-static loading has been
extensively studied since the early non-linear investigations by Budiansky [1] and
Wienitschke [2]. These were concerned with the large discrepancy between the
experimental results and the classical buckling loads. The discrepancies are considered
to be due to the high imperfection sensitivity exhibited by these structures. The
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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understanding of the non-linear behavior of imperfect shells has contributed to the task of
deriving effective design criteria for these shell structures [3]. On the other hand, the
dynamic stability analysis of spherical caps has not received the same attention from
investigators, possibly because of the difficulties in approaching this problem in a
systematic manner, and criteria for dynamic buckling are not well established. Moreover,
most of the studies on the axisymmetric dynamic buckling of shallow spherical caps have
focused their attention on the snap-through buckling under step loading of infinite or finite
duration [4–9]. Relatively little work has been done on the dynamic behavior of spherical
caps under harmonic loading [10–14].

Studies have shown that such shells may display, due to their inherently non-linear
nature, subharmonic and superharmonic oscillations, period-multiplying bifurcations,
multiple solutions, chaotic motions and jumps due to the presence of competing potential
wells and non-linear resonance curves within each well. Apart from the works of
Gonçalves [12, 15], no work appears to have been consistently done on the more realistic
problem of a pre-loaded shell. Simitses [16] has shown that the consideration of static pre-
loading is fundamental in the dynamic analysis of structural systems liable to buckling.

In the design of these shells special attention should be given to the phenomenon of
escape from the potential well associated with the pre-buckling solution. For small forcing
amplitudes, the motions remain in the neighborhood of the static non-linear reference
state, confined into the pre-buckling well. For certain critical values of the control
parameters, the motion may no longer be confined to this well. Here the system may jump
into another well or may exhibit large cross-well motions. Such instabilities may cause
undesirable stresses or displacements, or ever failure of the structural system. These critical
values may be smaller than the corresponding static buckling load and the reduction in the
load carrying capacity depends upon the characteristics of the dynamic load. In order to
design such a system, one must understand the physical process involved in non-linear
dynamic buckling and devise clear criteria and estimates for critical conditions.

Dynamic instability of structural systems liable to buckling can be traced back to the
investigations of Budiansky and Hutchinson [17]. Stimulated by recent developments in
non-linear dynamics, various investigations have been conducted with the aim of
explaining the mechanics of escape from a potential well under various types of dynamic
loading and deriving predictive criteria for dynamic buckling. Representative work
concerned with basic concepts of dynamic instability and escape from a potential well
include references [18–23]. Studies on cylindrical and spherical shells subject to dynamic
loads have displayed a wealth of non-linear phenomena [12, 24]. Simplified mass–spring
models have also been studied to shed some light on the dynamic behavior and instabilities
of limit-point systems [25, 26].

In the present work a non-linear model for the axisymmetric dynamic behavior of
clamped shallow spherical shells is presented. The basic approach is to solve the dynamic
version of the fourth order Marguerre equations by the Galerkin method. A solution
described by a linear combination of Bessel functions and modified Bessel functions based
on the free vibration modes of the unloaded perfect cap which is used to determine the
non-linear pre-stress state of the cap and to examine its non-linear vibration characteristics
along the pre- and post-buckling paths. Each term of the modal expansions satisfies all the
relevant boundary and continuity conditions.

The shell under uniformly distributed pressure loading is considered to be initially at
rest in a potential well corresponding to a pre-buckling configuration. Then harmonic
excitation is applied and conditions for escape from this potential well are sought. The
response of the spherical cap is found to be, in many respects, similar to the response of a
soft non-linear spring under harmonic load. A comprehensive analysis in parameter space
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is conducted and the different ways in which stability is lost are identified. Based on this
analysis, clear concepts of dynamic stability or instability are presented including criteria
and estimates for critical conditions. Hence, the aim of this study is to provide a better
understanding of the dynamic buckling of shallow spherical caps and a basis to construct
theoretically well founded and safe lower bound estimates for dynamic buckling loads.

In particular, we examine how such non-linear systems may be assessed, with a view to
design against steady state instabilities as well as the various modes of transient failure. By
defining steady state and transient stability boundaries, frequency regimes of instability
may be identified such that they may be avoided.

Firstly, a steady state analysis is used; resonance response curves in the forcing plane are
presented and the main instabilities are identified. Steady state stability boundaries, in
control space, are then constructed such that the behavior of the system when subjected to
a wide range of frequencies and forcing levels may be assessed.

Secondly, the global transient response of the system is investigated. The motivation
behind such an approach lies in the fact that for typical engineering systems, especially
those subjected to just a short duration of excitation, emphasis is on the short-term, rather
than the long-term, response of the structure. Since the initial conditions, or even the
parameters, may vary widely, and indeed are often unknown, attention is given to
analyzing all possible transient motions. Hence, the global behavior of the system is
examined in terms of transient basins of attraction; safe basins can be defined in which
transient motions, from a given set of starting conditions, do not exceed a given failure
criterion within a specified duration of the excitation [19, 27].

As parameters are varied, such as the forcing frequency for example, basins of attraction
can undergo quantitative and qualitative changes; often over a small parameter change
there can be rapid erosion and stratification of the basin at a fraction of the forcing level in
which the final steady state solution loses its stability; hence a stability analysis which
solely considers the steady state and neglects this global transient behavior, may be
seriously non-conservative [27–29]. In conclusion, the design implications of this
theoretical analysis are assessed; dynamic buckling criteria can be established which
may constitute a consistent and rational basis for design of these shell structures under
harmonic loading operating under either steady state or transient conditions.

2. BASIC EQUATIONS

The geometry of a uniformly loaded shallow spherical cap with clamped edge conditions
is presented in Figure 1, where R, a, H and h are the principal radius of curvature of the
sphere, the base radius of the cap, the rise of the mid-surface at the apex and the shell
thickness respectively. The polar co-ordinate system in the base plane is defined by r and y,
and the external uniform pressure distributed over the surface of the shell is denoted by q.

Within the framework of shallow shell theory (H/a50�25), the tangential forces and
displacements can be taken to be their projections onto the base plane of the shell. The
basic equations governing moderately large deformations, but small strains, of shallow
spherical caps were formulated by Marguerre [30]. In the case of axisymmetric static
deformations of a thin perfect cap, the governing equations may be expressed in the non-
dimensional form as

r4ws ¼ l2a1=2r2fs þ Q
4l4

a1=2
þ a

x
fs;x ws;x

� �� �
;x
; ð1aÞ



Figure 1. Shell geometry, displacements and co-ordinate system.
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r4fs ¼ �l2a�1=2r2ws �
1

x
ws;xws;xx

� �
; ð1bÞ

where (�),x=q/qx( ), a=12(1�v2) and l is a geometrical parameter described by

l ¼ a1=4a=
ffiffiffiffiffiffi
Rh

p
: ð2Þ

The non-dimensional radial co-ordinate x, the vertical displacement ws, the stress function
fs, and load parameter Q are related to the corresponding physical quantities by the
following relations:

x ¼ r

a
; ws ¼

Ws

h
; fs ¼

Fs

Eh3
; Q ¼ q

qcl

; ð3Þ

where qcl ¼ 2Eðh=RÞ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1 � v2ð Þ

p
is the classical buckling pressure of a complete

spherical shell, E is Young’s modulus and v is the Poisson ratio.
The boundary conditions at the clamped edge x=1 of the shallow shell are

ws ¼ 0; ws;x ¼ 0; us ¼ fs;xx �
v

x
fs;x ¼ 0; ð4Þ

where us is the radial displacement of the shell. Additionally, the finiteness of
displacements and stress is required at x=0.

To represent the basic static geometrically non-linear axisymmetric response, the
displacement ws and the stress function fs are assumed in the form

ws xð Þ ¼
XNS

i¼1

W0ifi xð Þ; fs xð Þ ¼
XNS

i¼1

F0ici xð Þ; ð5a; bÞ

where each separate generalized function

fi xð Þ ¼ J0 Kixð Þ þ J1 Kið Þ
I1 Kið Þ I0 Kixð Þ

� J1 Kið Þ I0 Kið Þ
I1 Kið Þ þ J0 Kið Þ

� 	
ð6aÞ
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ci xð Þ ¼ J0 Kixð Þ � J1 Kið Þ
I1 Kið Þ I0 Kixð Þ

þ
K2

i l4 þ K4
i

� �
4l4

J1 Kið Þ I0 Kið Þ
I1 Kið Þ þ J0 Kið Þ

� 	
x2 ð6bÞ

exactly satisfies the clamped boundary conditions at x=1 as well as the continuity
requirements of displacements and stresses at the center of the shell (x=0). These
functions are the linear vibration modes of an unloaded clamped shallow spherical
shell [11].

In equations (6a) and (6b) J0 and J1 are Bessel functions [31], and I0, and I1 modified
Bessel functions of the first kind, and Kn (0 5 K1 5 K2 5 � � � ) are the roots of the
equation

J0 Knð ÞI1 Knð Þ þ I0 Knð ÞJ1 Knð Þ½ 
Kn

l4 þ K4
n

� �
l4

1 � vð Þ
2

� 1

" #

þ 2J1 Knð ÞI1 Knð Þ 1 þ vð Þ ¼ 0: ð7Þ
Substituting expressions (5) into equations (1a) and (1b) and applying a Galerkin

minimization procedure one obtains a set of 2NS non-linear algebraic equations
characterizing the static behavior of the cap. Expressions (6a) and (6b) are used as the
weighting functions in this Galerkin procedure. These algebraic non-linear equations are
solved by the Newton–Raphson method.

In the further analysis, the dynamic behavior of the cap around the axisymmetric non-
linear static state will be considered. For this, a dynamic perturbation is superimposed on
the basic static state. In this case one has

Wp x; tð Þ ¼ ws xð Þ þ w x; tð Þ; Fp x; tð Þ ¼ fs xð Þ þ f x; tð Þ; ð8a; bÞ
where w(x, t) denotes the incremental displacement component and f(x, t) the corres-
ponding incremental stress function.

Using expressions (8) and the dimensionless parameters, one obtains the following non-
dimensional equation of motion:

r4w þ w;tt þ %ccw;t ¼ l2a1=2r2f þ a
x

f;x ws þ wð Þ;xþfs;xw;x

n o
;x

þ 4l4

a1=2
Af sin Otð Þ ð9aÞ

and the associated compatibility equation

r4f ¼ �l2a�1=2r2w � 1

x
w;xw;xx

� �
þ ws;x

� �
w;x

� �
;x
; ð9bÞ

where g2 ¼ ðaa4r=eh2Þ and

t ¼ t=g; %cc ¼ gc=rh; O ¼ go: ð10Þ
Here r is the mass density, t is the time, o is the driving frequency and c is the damping

coefficient.
The incremental state is assumed in the separable form

w x; tð Þ ¼
XND

i¼1

Wi tð Þfi xð Þ; f x; tð Þ ¼
XND

i¼1

Fi tð Þci xð Þ: ð11a; bÞ

The substitution of expressions (11) into equations (9a) and (9b), the use of the complete
equations for the basic non-linear static state, and the application of the Galerkin method



M. S. SOLIMANAND P. B. GONC	 ALVES502
yield a set of 2ND non-linear equations characterizing the dynamic behavior of the pre-
loaded cap.

The interested reader may find a more detailed presentation of the formulation used in
this paper as well as a parametric analysis of the static and dynamic behavior of the
cap under pressure loading in reference [3], where the non-linear buckling behavior of
an imperfect cap was analyzed, and in reference [12, 15] where the free vibration
characteristics and the non-linear response of the cap under harmonic loading was studied.

3. ONE-DEGREE-OF-FREEDOM MODEL

In a dissipative system, energy is lost due to damping and the system may settle down to
a final motion which can be described by only a few dimensions. This allows one to use
various mathematical techniques and numerical tools recently developed for the global
investigation of low-dimensional systems. In particular, one can examine the global
behavior of the system in terms of transient basins of attraction or safe basins in which
transient motions, from a given set of starting conditions, do not exceed a given failure
criterion within a specified duration of the excitation [19, 27, 32]. It will be assumed for this
study, based on numerical results, that for shallow spherical caps the first mode is
dominant and a simplified one-degree-of-freedom (1 d.o.f) model is capable of describing
with a reasonable degree of accuracy the non-linear behavior of the cap; issues such as
modal coupling which might result in internal resonances will be considered in future
research. Nonetheless, results considering several degrees of freedom for both the static
and dynamic response have obtained the same general behavior and bifurcation scenario
as the one presented in this paper [12].

Using in expressions (5) the number of terms NS necessary to achieve convergence
of the non-linear static state and using only one mode (ND=1) in equation (11) to describe
the dynamic response, one obtains a 1-d.o.f. model for the cap. Elimination of F1 in
the resulting equation of motion by the use of the compatibility equation results in the
following equation of motion in terms of W1:

W1;tt þ %ccW1;t þ a1W1 þ a2W 2
1 þ a3W 3

1 ¼ bAf sin Otð Þ; ð12Þ
where the coefficients ai and b are functions of the shell parameters and of the static pre-
stress state.

As one can observe, equation (12), governing the motion of the pressure loaded cap,
possesses both quadratic and cubic non-linearities. Elimination of both damping and
forcing will produce the equation

W1;BB þ a1W1 þ a2W 2
1 þ a3W 3

1 ¼ 0: ð13Þ
Multiplying equation (13) by W1,t and integrating will yield

1
2

W 2
1;t þ 1

2
a1W 2

1 þ 1
3
a2W 3

1 þ 1
4
a3W 4

1 ¼ C; ð14Þ

where T ¼ 1=2W 2
1;t is recognized as the kinetic energy, P ¼ a1W 2

1 =2 þ a2W 3
1 =3 þ a3W 4

1 =4
is seen to be the potential energy and C is a constant.

Table 1 shows the values of the coefficients ai for a cap with l=4 and v=1/3 under
selected static load levels.

The static non-linear response for this shell is shown in Figure 2. For Q5QL, only one
equilibrium point (a point attractor) exists. For QL5Q5QU there are three equilibrium
points: two stable equilibrium positions separated by a saddle. In this range one has a
non-symmetric two-well potential function. Increasing the load in this range, the well,
associated with the buckled state, becomes deeper, while the well, associated with the



Table 1

Load Q a1 a2 a3

0�00 612�77 �581�51 154�24
0�10 552�16 �559�53 154�24
0�20 486�40 �534�34 154�24
0�30 413�34 �504�41 154�24
0�40 328�67 �466�48 154�24
0�50 219�87 �410�50 154�24

Figure 2. Non-linear equilibrium path of a shallow shell, l=4.
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unbuckled state, becomes shallower. The existence of these competing attractors for
QL5Q5QU is the main source of the complex non-linear dynamic behavior shown herein.

For a perfect cap with l=4 and v=1/3 and Q=0�5, equation (12) reduces to

W1;tt þ %ccW1;t þ 219�87W1 � 410�50W 2
1 þ 154�24W 3

1 ¼ 358�88Af sin Otð Þ: ð15Þ

For this load level there are three equilibrium positions at W1=0, 0�7431 and 1�9183.
These are in fact the values of the temporal amplitudes of the first mode. To obtain the
spatial equilibrium configurations, these values should be inserted into equation (11a) and
multiplied by the corresponding spatial interpolating function. For instance, the
corresponding displacement of the apex of the shell are 0, 1�1518 and 2�9734. The shape
of the corresponding potential is illustrated in Figure 3, showing two smooth minima at
W1=0 and 1�9183, where the damped, unforced system has point attractors and a
maximum at W1=0�7431, corresponding to a saddle point. A small external vibration
converts these static equilibrium points to limit cycles in the forced system. For the rest of
this study, we shall use numerical time integrations, using a fourth order Runge–Kutta
algorithm, to analyze the large amplitude motions of equation (15), since analytical
methods become increasingly inaccurate at higher amplitudes which often result in chaotic
vibrations.



Figure 3. Potential well of the non-linear system.

M. S. SOLIMANAND P. B. GONC	 ALVES504
Firstly, the steady state response, namely that in which transients have effectively
decayed, will be determined. Secondly, attention will be turned to the global transient

behavior of the system. By acknowledging that the system from the initial conditions
ðW1ð0Þ; ’WW 1ð0ÞÞ can experience various combinations of excitations, one can say that the
four-dimensional phase-control space ððW1ð0Þ; ’WW 1ð0Þ;Af ;OÞÞ defines the ensuing motion.
To determine a safe transient basin, each integration is continued until the system either
exceeds a given failure criterion, or the maximum number of forcing cycles, m, is reached,
implying that the system is safe or robust to such an excitation. In this way one can define
a set of points in the four-dimensional space that do not fail within m cycles and hence
define a transient safe basin. Since only the transient behavior is being assessed, no note is
made of the type of attractor the system settles upon. There may be indeed many co-
existing attractors, which may include the harmonic, subharmonic or even chaotic
attractors.

Specifying the controls and taking a grid in the ðW1ð0Þ; ’WW 1ð0ÞÞ plane allows us to draw
conventional cross-sections in the phase-space of the initial conditions: while specifying
ðW1ð0Þ; ’WW 1ð0ÞÞ and taking a grid in the (Af, O) plane allows one to draw cross-sections of
transient basins in the two-dimensional control space.

4. STEADY STATE STABILITY BOUNDARIES

4.1. STEADY STATE RESONANCE

For systems operating under essentially steady state conditions, where transients have
effectively decayed, the variation of a parameter can result in a resonance response, where
at critical frequencies, the system may execute large amplitude oscillations or indeed
completely lose its stability and fail. In this section typical non-linear resonance behavior is
outlined, and the main or fundamental instabilities identified. Response curves under the
slow variation of forcing amplitude are shown in Figure 4 where the maximum steady
state displacement (during one facing period) has been plotted against the forcing ampli-
tude, Af, at fixed O.

As the forcing is applied, the systems leaves the stable equilibrium state, starts to
oscillate in a transient manner and then settles down to a steady state n=1 oscillation of
period T=2p/O. The transient length and the amplitude of oscillation are dependant upon



Figure 4. Steady state response curve at ON=12�5, c=2�0.
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the damping level of the system. For small amplitude oscillations, the system behaves like
a linear oscillator, as can be seen in the almost linear relationship between Wmax and Af.
However, at higher forcing levels, non-linear behavior is evident, where it can be seen that
a small increase in Af results in a relatively large change in Wmax. Indeed a region of
hysteresis is observed between A and B. A further increase in Af results in a more gradual
increase in amplitude until then n=1 oscillation becomes inversely unstable and there is
a period-doubling flip bifurcation, at C, to an n=2 subharmonic oscillation of period
T=4p/O. The period-doubling scenario is again repeated at diminishing scales with an
infinite cascade of flip bifurcations running through subharmonics of order 2,4,8, . . . ,1
which generates a chaotic attractor. The stable attracting solution of the steady state chaos
finally loses its stability at a boundary crisis, at E, which results in the inevitable escape out
of the potential well (left hand) with the amplitude tending to large values. In the
engineering sense this would imply failure of the system.

In this summary, it has been shown that under the slow variation of a parameter
qualitative changes in the behavior of the system can occur. Such bifurcations may be
considered as dangerous instabilities since they may often result in a substantial
quantitative change in the response. At points A and B for example, the system
experiences jumps to and from resonance, respectively; at C the harmonic response loses
its stability and becomes a subharmonic responses; at E, the chaotic oscillation loses its
stability at a crisis.

4.2. STEADY STATE BOUNDARIES IN PARAMETER SPACE

In this section steady state stability boundaries, that identify regimes of the various
modes of instability are constructed. Figure 5 shows the main steady state bifurcations, in
(Af, O) control space, in the frequency regime close to the fundamental resonance (the
natural frequency ON=14�82)

Line A represents parameters in which jumps to resonance occur. Line B corresponds to
a saddle-node fold, which results in the creation of a finite amplitude oscillation (a jump
from B may occur). Line C is the first period-doubling flip bifurcation, at which this
resonant harmonic attractor period-doubles to a stable subharmonic of order n=2. There
is an infinite sequence of these flip bifurcations leading to a chaotic attractor which finally



Figure 5. Steady state stability boundaries in (Af, O) parameter space.

M. S. SOLIMANAND P. B. GONC	 ALVES506
loses its stability at a crisis at E. Point Q corresponds to where line E intersects line A. For
jumps to resonance occurring from fold A above point Q, there are no available attractors
to jump to within the right-hand well, and hence a purely deterministic but unsafe jump
occurs where the system fails. Also shown is the value of the static critical load.

5. GLOBAL TRANSIENT DYNAMICS: EROSION OF THE SAFE BASIN

Since several steady state attractors may co-exist at a fixed set of control parameters the
initial conditions, ðW1ð0Þ; ’WW 1ð0ÞÞ play an important role in the eventual long-term
response of the system (see Figure 6). For many engineering system, however, especially
those subjected to just a short-duration excitation, emphasis is on the short-term, rather
than the long-term, response of the structure. Since the initial conditions may vary widely,
and indeed are often unknown, it is useful to address the transient global behavior of the
system in terms of transient basins of attraction. Studies have shown that it may be
convenient to describe the evolution of the safe basin as the magnitude of the excitation is
increased [19].



Figure 6. Sensitivity of the response to the initial conditions. Two different initial conditions may lead to a
(i) safe response, (ii) snap through at Af=0�045, O=12�5.
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Figure 7 shows a basin evolution sequence as the excitation is increased. Here, from a
grid of initial conditions, each integration is continued until either the response exceeds a
given failure criterion, Wmax, or the maximum allowable number of cycles, m(=20), is
reached and hence the system is considered to be safe or robust to such an excitation. The
choice of both the failure criterion (say a given displacement or velocity, for example) and
m depends on the system in question.

Since only the transient behavior of the system is being assessed, no note is made to
which attractor the system settles. There may be indeed many co-existing attractors, which
may include the harmonic, subharmonic or even chaotic attractors. Here, white represents
the safe, or the non-escaping, basin and black represents the unsafe basin. It can be seen
that there is little change in the size or position of the safe basin up to Af=0�035. As the
magnitude of the forcing is increased there is then a homoclinic tangling of the stable and
unstable manifolds of the hill-top saddle, resulting in a fractal basin boundary, with thin
finger-like projections penetrating the safe basin. This results in a sensitive dependence on
the initial conditions; however, on the macroscopic level, this phenomenon is not too
serious provided that this fractal zone remains as a thin layer around the edge of the basin.
As the forcing is further increased, these fingers become more evident until at Af=0.045,
due to underlying manifold organization and consequent heteroclinic events, there is a
dramatic erosion and stratification of the basin.

This rapid loss of basin area can be quantified by engineering integrity curves. Figure 8
shows how the basin area, G, determined by recording the proportion of initial starts that
do not fail with m forcing cycles within the given window of initial conditions, varies with
the magnitude of excitation [19]. In comparison with Figure 4, it can be clearly seen that
the loss of basin area occurs at smaller forcing level, than that at which the steady
state attractor loses it stability at a crisis, E. Due to the inherent uncertainties in the
specification of the initial conditions, this represents a rapid loss of integrity for a system
operating in an ill-defined environment. Although there remains a residual basin,
associated with the steady state attractor, an engineering analysis, which considers only a
steady state stability analysis, and neglects this global transient behavior, might therefore
be seriously non-conservative.



Figure 7. Global transient behavior may be assessed plotting basins of attraction versus forcing amplitude Af.
Here ON=12�5. For each picture 150� 150 initial conditions are chosen in the window �0�
85Wð0Þ51;�105 ’WWð0Þ510: Maximum number of forcing cycles (m=20) or a failure criterion (Wmax)= 1
is reached. White indicates safe basin; black indicates unsafe basin.

Figure 8. Global integrity curve, of safe basin area versus Af. Here ON=12�5 shown. Here G is the normalized
safe basin area (safe basin area at Af/safe basin area Af =0) and 50� 50 initial conditions are chosen in the
window �0�85Wð0Þ51;�105 ’WWð0Þ510: Maximum number of forcing cycles (m=20) and the failure criterion
is Wmax=1.
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6. FRACTAL BOUNDARIES IN PARAMETER SPACE

In this section transient boundaries in parameter-space are assessed by considering
the response of the system from a fixed set of initial conditions to a wide combination of
excitation parameters. The fractal control boundaries in parameter space would in some
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sense correspond to the classical pictures of Mandelbrot. The set of (Af, O) values that can
sustain such a pulse indefinitely is here a set of absolute constraint, corresponding to the
Mandelbrot set; whereas the control values that prevent escape with m forcing cycles
would define a set of transient constraint.

A typical transient time map in control space for fixed initial conditions is shown in
Figure 9. Here starting all time integrations from an initial condition at the equilibrium
ðW1ð0Þ; ’WW 1ð0Þ ¼ 0Þ and using a grid in control space gives us the (Af,O) cross-sections
of the safe basins. The reason here for choosing initial conditions close to the equilibrium
state, would for example, allow the failure locus of a this structural system resting near its
ambient equilibrium state to a sudden pulse of excitation of magnitude Af and frequency
O, to be determined. Furthermore, since the phase-basin is often swiftly eroded across its
entire region, the global loss of engineering integrity may be detected by time integrations
Figure 9. Transient time map in (Af,O) parameter space. For this diagram the range of (Af,O) correspond to
Figure 5 and Wð0Þ ¼ ’WWð0Þ ¼ 0: Maximum number of forcing cycles (m=20) and a failure criterion is chosen at
Wmax=1. White indicates safe basin; black indicates unsafe basin.
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from a small number of starting conditions at a given set of parameters. For many practical
purposes (especially in terms of computational effort, or indeed model testing) an adequate
assessment may be obtained by just one central start. Here, it must be recalled that the
four-dimensional phase-control space ðW1ð0Þ; ’WW 1ð0Þ1;Af ;OÞ defines the ensuing motion.
Since one is interested in analyzing the global transient response in terms of the phase-
basin structure, choosing other initial conditions near the equilibrium, would result in the
same macroscopic structure of these control-space transient-time maps. Obviously in the
fractal regimes, the response would be infinitely sensitive to the choice of initial states.

Regions that are unsafe (escape), with W tending to large values, within m forcing cycles
are shaded in black; regions that remain safe (bounded) are shaded in white. This diagram
clearly summarizes the excitations the system can sustain. In comparison with the stability
boundaries for steady state one sees that for relatively small forcing levels, the initial
condition chosen generates a response that remains with the well. However at higher
forcing levels, one can see that the boundaries in control-space become fractal such that
there is now a sensitive dependence on parameters. There is a highly interwined zone in
which some parameters generate trajectories that remain bounded and some result in
escape out of the well; an increase of the forcing level at a fixed frequency does not
necessarily imply escape out of the well. On the practical level these fractal boundaries, in
which the response is infinitely sensitive to the parameters, may be considered as a failure
locus for a system subjected, while resting near its ambient state, to a sudden pulse of
excitation, since both short- and long-term predictability is lost.

On the macroscopic level, this analysis also provides information regarding the
characteristics of the initial condition map, and hence the global transient stability of the
system. Since the phase-space basin is often swiftly eroded across its entire region, by
choosing an initial condition near the central zone, the global loss of engineering integrity
may for practical purposes be adequately assessed from such an analysis.

7. CONCLUSIONS

Based on Marguerre’s shallow shell equations, an accurate multi-mode solution is
formulated and applied to study the non-linear vibration characteristics of a pressure-
loaded geometrically perfect spherical cap along its non-linear pre- and post-buckling
paths. It is shown that pressure-loaded shallow spherical shells exhibit a high degree of
non-linearity.

A detailed parametric study, using computer simulations, shows that the cap under
harmonic excitation may display dynamic buckling loads well below the static limit-load.
In particular it has been shown that for systems which operate under essentially steady
state conditions, large amplitude, subharmonic and chaotic oscillations may occur as well
as dangerous bifurcations that may result in failure of the system. On the other hand,
for systems operating in essentially transient conditions, where the global basin behavior
is of importance, large-scale erosion and stratification of the basin implies a loss of
transient stability of the system. It was examined how steady state and transient stability
boundaries, that identify regimes of instability, may be constructed, such that non-linear
structural systems under vibration may be designed accordingly.

The global transient stability of a typical thin-walled structure has been assessed and
quantified in terms of transient basins of attraction. It was shown that under increasing
excitation, basin boundaries can become fractal; although this fractal zone may initially be
confined to a small region of phase-space, a relatively small parameter change may result
in rapid erosion and stratification of the whole basin. It was argued that this represented a
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loss of global transient stability of the system. In addition, it was shown that a stability
analysis based solely on the steady state response may be seriously non-conservative.

Furthermore, it was shown that boundaries in parameter space can become fractal.
Since in all dynamical systems there is uncertainty in the specification of the parameter
values, these diagrams clearly summarize the excitations the system can sustain. By
choosing initial conditions near the equilibrium solution, the failure locus of a system
resting near its ambient equilibrium state due to a sudden pulse of excitation of magnitude
Af and frequency O may be determined. Furthermore, since the phase-space basin is often
swiftly eroded across its entire region, the global loss of engineering integrity may, from a
practical point of view, be assessed using this approach.

It is suggested that the present study can provide a basis for design criteria for shallow
spherical shells under harmonic loads. Although the analysis of shells under harmonic
loading provides an understanding of the resonant behavior, it may also provide a basis
for analyzing the response to other types of periodic loads, and in some aspects, under
other types of time varying load. This may have importance, for example, when analyzing
the failure of shell structures under wind loading [33]; and in the dynamic analysis of
shallow spherical shells, in the context of biomedical engineering, where they have been
used in ventricular assist devices [34, 35]. Here, a shallow elastic spherical cap separates the
blood chamber from the pneumatic chamber and is subjected to a periodic loading; where
the snap-through phenomenon is responsible for the desired blood flow. In the analysis of
such devices, the correct type of periodic response and the reliability of such response
under pressure fluctuations is essential to patient survival.

Although the present analysis is restricted to clamped spherical caps, some of the
conclusions could be extended to other thin-walled structural elements liable to fold-type
buckling such as shallow conical caps, cylindrical panels and shallow arches. In addition
other issues which may have an important influence on the dynamic instability of the shell
include the type of loading, modal coupling, with the possibility of internal resonances, the
influence of geometric imperfections as well as non-symmetric effects will all be considered
topics of future research.
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